&P LK CGEID

The Chinese University of Hong Kong, Shenzhen

Introduction to Computer Science:
Programming Methodology

Lecture 3 Flow Control

Guiliang Liu
School of Data Science

Conditional flow

Program Outputs
x=h smaller
x<10: . finighed
print (“smaller”™) >oo |
wr 20

print ("bigzer”)
print (" finished”)

Comparison operators

* Boolean expressions ask a question and
produce a Yes/No result, which we use
to control program flow

* Boolean expressions use comparison
operators to evaluate Yes/No or
True/False

* Comparison operators check variables
but do not change the values of
variables

e Careful!! “=“is used for assignment

x < v | Isxlessthan y?

x <= vy | Is x less than or equal to y?

x == vy | Isxequal toy?

x >= vy | Is x greater than or equal to y?
x > vy | Isx greater than y?

x != vy | Is x notequal to y?

Comparison operators

x=h
1t x==h:
print ("Equals 57
1t med:
print ("Sreater than 47) Equals §
Greater than 4
1t x»=h: — Greater than or egual teo b
print ("Greater than or equal to 57) Less than or equal 5
Not equal 6
if =<=h:

print ("Less than or egqual §57)

11 =!l=6:
print ("Not equal E7)

Examples of comparison

>>> 5§ > 7
False
>>> x, y = 45, =-3.0
>>> X > ¥
True
>>> result = x > y + 50
>>> result
False
>>> 1f 1 + 1 > 1:
print ("I think this should print.")

I think this should print.
>>> "hello" > "Bye"

True

>>> "AAB" > "AAC"

False

Python 3 uses the lexicographic (dictionary) order for strings

Capital letters are always before lower case letters

Examples of comparison

7.0

S-S |

True
0.1

10 * x

>5>> X

-5

True
>>> 1
False
>>> X+ X + X + X + X+ X +X +X + X + X
0.99595999595559999

e T != 1r"||,|'1r

X + X + X +X + X +X +X +X + X + X

True
>>> "A' == 65
False

Boolean type

* Python contains a built-in Boolean type, which takes two
values True/False

* Number O can also be used to represent False. All other
numbers represent True

George Boole (1815 - 1864): Mathematician, inventor of mathematical
logic, significant contributions to differential and difference equations

Bool()

>>> X = 0; y=0.0; z =0+ 07

>>> bool(x), bool(y), bool(z)
(False, False, False)

>>> Xx = -1; y=1.e-10; z = 0 + 17
>>> bool(x), bool(y), bool(z)
(True, True, True)

>>> x = [1; y = [0]; z="0"

>>> bool(x), bool(y), bool(z)
(False, True, True)

if statement

If Statement
- if (condition){

T : ,Qt_u.!,::‘_;(s = Y=y |‘|']' svran oa adeam
—lrue— # | NIS DIOCK WIll execut

Félse }

Source: Geeksforgeeks

if statement

X=h
print Before 57)
1t x==h:

print{ Is &)
print (Iz =till 5)
print { Third 5)

print (Afterwards 57)

print { Before &)

1t ===6:
print{ Is £)
print(Is =still &)
print { Third &)

print (Afterwards 6]

Before 5

I= b

I= =st111 b5
Third &
Afterwards b
Before b
Afterwards G

Indentation

* Increase indent: indent after an if or for statement (after :)

* Maintain indent: to indicate the scope of the block (which lines are
affected by the if/for)

 Decrease indent: to back to the level of the if statement or for
statement to indicate the end of the block

* Blank lines are ignored — they do not affect indentation
* Comments on a line by themselves are ignored w.r.t. indentation

Increase/maintain/decrease

* Increase/maintain after
if/for statements

e Decrease to indicate the
end of a block

* Blank lines and
comments are ignored

®=h

print { Before 5)

1t xz==h:
print(Is &)
print Is still 5)
print ¢ Third 5)

print C Afterwards 5
-
print Before B)
11 ®Z==6:
print(Is &)
print{ Is =still B)
print ¢ Third £)

| HH\ Rl

print C Afterwards &)

Nested if statement

Source: Geeksforgeeks

Nested decisions

Example

z=47
wr]
print More than 17)

24 100:
print ¢ Less then 1007)

print Finished)

Mental begin/end

=10

1f x»25:
print { Greater than 5)

1f w28
print Greater than &)

1t w210
print { Greater than 107)

[T

print { Finished)

Exercise

Write a simple script for a teacher. The script will check a student's
grade from a variable and print whether they passed or failed.

The passing grade is 60 or higher.

if....else statement

If...else Statement

— if (condition){
True— # This blocl
}

False
else {

.}_,

Source: Geeksforgeeks

if....else statement

I
—

=

wr
print{ Bigzer’)

print ¢ Smaller’) print 'Not bigger'
print C Finished)
print 'All Done'

Tips on if - else

=1 z=1
1t =22 : _
print { Bizger) 1 H}EZ t ¢ B :y
else: Diln 15sbl .
. [[ElSE. -
print U Smaller’) print Smaller’) <
print (' Finished) print (Finished)

* else must come after if
e Use indentation to match if and else

Example

x=1
1f =22
1f =»h:
print C Bigzer than 5)
elze:

print Smaller than 5)

print Finished)

Nested if else statement

Nested if Statement

— if (condition){

True | if (condit

ion){

1L N 1 3 .
— - " all 1TaYe Il AT oV ad B e "
True # I NIS DIOCK WILL execute

False

Source: Geeksforgeeks

if...elif...else Statement

W=
wi

IIlHHIHHHIII
print { Small’)

we 10:

I?rlnt[o
print { Largze’)

print { Finished)| print ‘LARGE
print 'All Done'

Multi-way decision

#llo else

w=Y
wad
print O Small’)
x4 10:
print © Medium)

print { Finished)

Multi-way decision

®x=hE

w2

print { Small’)
w4 10;

print { Medium)
wh 20

print Larze’)
z440:

print { Huge)

print U GCinormous’)

print { Finished’)

Which will never print?

x=4 x=8
1f =ma=2: 11 =42
print Below 27) print { Below 27)
elif w22 elif =<20:
print { Above 27) print C Below 207)
else: =lif x<10:
print { Something else’) ?rlnt[Below 10°)
print { Finished) else:

print { Semething else’)
print { Finished)

Logical operators

*Logical operators can be used to combine several
logical expressions into a single expression

* Python has three logical operators: not, and, or

Example

>>> not True

False

>>> False and True

False

>>> not False and True
True

>>> (not False) and True
True

>>> True or False

True

Example

>>> not False or True # Same as: (not False) or True.
True

>>> not (False or True)

False

>>> False and False or True # Same as: (False and False) or True.

True
>>> False and (False or True)
False

Try/except structure

* You surround a dangerous part of code with try/except
* If the code in try block works, the except block is skipped

* If the code in try block fails, the except block will be executed

Example

astr = "Hello hal’

iztr = intflastr)
print First , istr)

astr = 123
iztr = intf{astr)
prlnt[Second , istr)

Input

: Central
Devices

Processing
Unit

Output Main
Devices Memory

Generic
Computer

Secondary
Memory

Use try/except to capture errors

astr = "Hello hob’
istr = int(astr)

1str = -1
print First™, istr)

astr = 123
istr = int(astr)
1=ztr = —1

print { Second’, istr)

* When the first conversion fails, it just
stops into the except block, and the
program continues

* \When the second conversion

succeeds, it just skips the except
block

Try/except

astr = ~Baoh’

.print[’Hellﬂjj
iztr = int {astr)
print { There’)

1=tr = -1
print { Dene” , istr)

print 'Hello'
istr = int(astr)

print 'Done’, istr

istr = -|

Safety net

Example

rawstr = input Enter a number:’)
trv:
ival = inti{rawstr)
except:
ival = -1
1 iwvalr0:
print { Hice work)
else:

print C Invalid number’)

Practice

* Write a program to instruct the user to input the working
hours and hourly rate, and then output the salary. If the
working hours exceed 40 hours, then the extra hours
received 1.5 times pay.

Practice

e Write a program to instruct a user to input a date (both
month and day), and then output the new month and day
when the inputted date is advanced by one day (leap years
are ignored)

Answer

#Add a dav to a given date

month = int (input { Enter a month (1-12):7)]
davy = int {input { Enter a dav (1-31):7 1))

davsInMonth = (31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31)

i1t davédavsInMenthl[menth—-11:
print (month, day+1)
else:
month = month%ly? + 1

print (month, 1)

Aﬂswer What if the user input something invalid
(month:’13’, day:’32’)?
try.... except

#Add a dav to a given date

| month = int (input { Bnter a month (1-12):7 017 |
| davy = int {input { Enter a dav (1-31):7 1)) |

davsInMonth = (31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31)

i1t davédavsInMenthl[menth—-11:
print (month, day+1)
else:
month = month%ly? + 1

print (month, 1)

Repeated flow

Program Outputs
n="h 5
n.s0: / %
nrint (n) :
n =n — 1 1
print ("Finish™) —~ Finish
Y

* Loops (repeated steps) have iterative variables that change each time
through a loop

e Often these iterative variables go through a sequence of numbers

An infinite loop

n=h
e
print { Lather’)
print (Rinse’)
n=n-—1

print{’DrF off17)

 What is wrong with this program?

Another loop

n="[

A
print { Lather)
print C Einse’)
n=n-—1

print O Dry off!")

* What is wrong with this program?

Breaking out of a loop

* The break statement ends the current loop, and jumps to the
statement which directly follows the loop

(I

line = input { Enter a word:)

n L L
line == ~ done

print (line)
print Finished)

Finishing an iteration with continue

line = input(Input a word:’)
linel[0] == "# :

» L] L]
line == done

print (line)
print (Done’)

* The continue statement ends the current iteration, and start
the next iteration immediately

Indefinite loop

* While loops are called “indefinite loops”, since they keep going until a
logical condition becomes false

* Till now, the loops we have seen are relatively easy to check whether
they will terminate

 Sometimes it can be hard to determine whether a loop will terminate

Definite loop

 Quite often we have a finite set of items

* We can use a loop, each iteration of which will be executed for each
item in the set, using the for statement

* These loops are called “definite loops” because they execute an exact
number of times

* It is said that “definite loops iterate through the members of a set”

A simple for loop

Example Output

i in [5,4,3, 2 1]: ?l
nrint (i) 2
print{ Finished) 5
1
F

inished

Another example

Example Output

friends = [Tom ,” Jerry , Bat’] Happy new vear Tom
friend friends: Happy new vear Jerry
print { Happy new vear’ , friend) Happy new vear Bat

print Done’) Done

For loop

Example Output
i in [5,4,3,2, 1] ?l
nrint (i) 2
print Finished) :
1
Finished

* For loops (definite loops) have explicit iteration variables that change
each time through a loop.

* These iteration variables move through a sequence or a set

In

* The iteration variable “iterates”
through a sequence (ordered set)

* The block (body) of the code is
executed once for each value in the
sequence

e The iteration variable moves
through all of the values in the
sequence

Sequence with

lteration variable five elements

1 [G5,4,53,2,1]:
print (i)

Loop patterns

* Note: though these examples are simple, the patterns apply
to all kinds of loops

Making “smart” loops

* The trick is “knowing” something
about the whole loop when you
are stuck writing code that only
sees one entry at a time

Set some variables to initial
values

for thing in data:

Look for something or
do something to each
entry separately,
updating a variable.

Look at the variables.

Looping through a set

Example Output
print { Before’) Before
thing [3, 5, 100, 34, 6, 87] : 3
print (thing) 9
print O After’) 100

34
G
=27

After

Finding the largest number

Example

largest _so _far = -1
print Before’, largzest so far)

num [9, 39, 21, 98, 4, 5, 100, 65] :
nums largest _so_far:
largest _so far = num
print (larzest so far, num)

print (" After’, larsest _so far)

Output

Before -1
oG

a4 349

a9 21

HE 98

928 4

98 b

100 100
100 Bh
After 100

* Use a variable to store the largest number we have seen so far
* |f the current number is larger, we assign it to the store variable

Counting in a loop

Example Output
CGFHt n 0 , Before O
print { Before’, count) 1 3
thing [3,4,98 38 9,10, 199, 78] : 7 4
count = count + 1 508
print (count, thing) 4 38
print { After’, count) ho9
5 10
T 199
2 78
After &

* To count how many times we have executed a loop, we can introduce
a counting variable, which increases itself in each iteration

Practice

* Given a set of numbers, write a program to calculate
their sum using for loop

Answer

numberSet = [3, 4, 98, 38, 9, 10, 1939, T&]

total = 0O

nrint { Before’, total)
num number=et:
total = total + num

print (total, num)
print{ Last’, total)

Before 0O
a3 3

T 4

105 98
143 38
152 9
162 10
aBl 1949
439 78
Last 439

Practice

* Given a set of numbers, write a program to calculate
their average using for loop

Answer

numberSet = [3, 4, 98, 38, 9, 10, 199, 7&]

Before 0O
total = 0O é ? i
count = 0O
print Before’, total) i }gg gg
I numher=et:
total = total + num o 152 9
count = count + 1 b 162 10
print (count, total, num) ToaBl 199
print{ Last’, total, total/count) 2 439 7a8
Last 459 54, 875

Filtering in a loop

Example Output
print { Befeore’) Before
value [23, 3, 43, 39, 80, 111, 99, 3, 65] : Large value: 50
value 50 Large walue: 111
print { Large walue: , value) Large wvalue: 93
Large walue: Bb
print C After’) After

* We can use an if statement in a loop to catch/filter the values we are
interested at

Search using a Boolean variable

Example Output
found = Before False
False 4
print [Before’ , found) False 41
Falze 1%
value [9, 41, 12, 3, 74, 15]: False -
value == 74: True T4
found =
print (found, value) E??:rlgrue

print U After’, found)

* |If we want to search in a set and double check whether a specific number is in
that set

* We can use a Boolean variable, set it to False at the beginning, and assign True to
it as long as the target number is found

Finding the largest number

Example

largest _so _far = -1
print Before’, largzest so far)

num [9, 39, 21, 98, 4, 5, 100, 65] :
nums largest _so_far:
largest _so far = num
print (larzest so far, num)

print (" After’, larsest _so far)

Output

Before -1
oG

a4 349

a9 21

HE 98

928 4

98 b

100 100
100 Bh
After 100

* Use a variable to store the largest number we have seen so far
* |f the current number is larger, we assign it to the store variable

Finding the smallest number

smallest _so far = -1
print { Befere’, smallest _so_ far)

rum [9,39,21,98, 4,5, 100, 65] :
num % smallest so far:
smallest so far = num
print (smallest so far, num)

print { After’, smallest _so far)

 Use a variable to store the smallest number we have seen so far
* If the current number is smaller, we assign it to the store variable

* What is the problem with this program?

Finding the smallest number

Example Output

smallest_so_far = Before None
print { Before’, smallest so_far) a g
rum [9, 39, 21, 98, 4, 5, 100, 65] 9 54
smallest _so _far == 9 d1
smallest so far = num ERS IS
num %~ smallest _so_far: 4 4
smallest_so_far = num 4 G5
print (smallest so far, num) 4 100
rint C After’, esmallest so far) 1 65
F ’ -7 = After 4

 \We still use a variable to store the smallest value seen so far

* In the first iteration, the smallest value is none, so we need to use an
if statement to check this

The is and is not operator

smallest_so_far = * Python has a “is” operator which

print Befere’, smallest so far) i])
can be used in logical expression
num in [9,39, 21, 98, 4, 5, 100, 651 ;

csmallest so far : ° Implles “is the same as”
smallest _so _far = num o
num % smallest_so_far: e Similar to, but stronger tha
smallest _so _far = num
print (smallest so far, num) e “Isnot” is also an Operator

print { After’, smallest so_ far)

Is operator

Example Output
print (10 10) True
- 10 True
L= 10 True
print (a b FEL].SlE
a = 123

h = 125

print (a b)

a = [1,2, 3]

b = [1,2,3]

print (a b)

	Slide 1: Introduction to Computer Science: Programming Methodology
	Slide 2: Conditional flow
	Slide 3: Comparison operators
	Slide 4: Comparison operators
	Slide 5: Examples of comparison
	Slide 6: Examples of comparison
	Slide 7: Boolean type
	Slide 8
	Slide 9: Bool()
	Slide 10: if statement
	Slide 11: if statement
	Slide 12: Indentation
	Slide 13: Increase/maintain/decrease
	Slide 14: Nested if statement
	Slide 15: Nested decisions
	Slide 16: Mental begin/end
	Slide 17: Exercise
	Slide 18: if....else statement
	Slide 19
	Slide 20: Tips on if - else
	Slide 21: Example
	Slide 22: Nested if else statement
	Slide 26
	Slide 27: Multi-way decision
	Slide 28: Multi-way decision
	Slide 29: Which will never print?
	Slide 30: Logical operators
	Slide 31: Example
	Slide 32: Example
	Slide 33: Try/except structure
	Slide 34: Example
	Slide 35
	Slide 36: Use try/except to capture errors
	Slide 37: Try/except
	Slide 38: Example
	Slide 39: Practice
	Slide 40: Practice
	Slide 41: Answer
	Slide 42: Answer
	Slide 43: Repeated flow
	Slide 44: An infinite loop
	Slide 45: Another loop
	Slide 46: Breaking out of a loop
	Slide 47: Finishing an iteration with continue
	Slide 48: Indefinite loop
	Slide 49: Definite loop
	Slide 50: A simple for loop
	Slide 51: Another example
	Slide 52: For loop
	Slide 53: In
	Slide 54: Loop patterns
	Slide 55: Making “smart” loops
	Slide 56: Looping through a set
	Slide 57: Finding the largest number
	Slide 58: Counting in a loop
	Slide 59: Practice
	Slide 60: Answer
	Slide 61: Practice
	Slide 62: Answer
	Slide 63: Filtering in a loop
	Slide 64: Search using a Boolean variable
	Slide 65: Finding the largest number
	Slide 66: Finding the smallest number
	Slide 67: Finding the smallest number
	Slide 68: The is and is not operator
	Slide 69: Is operator

